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The impetus for this work derived from the observation that
hydrocarboril underwent explosive decomposition at 245to
generate Cll H,, and graphitized carbon particléVhile the
latter were formed in low yield (32% by TEM), in poor quality,
and in the presence of mainly graphite and amorphous carbon, it
suggested the possibility of a general approach to such carbon
allotropes. Initial investigations in this vein were, however,
disappointing inasmuch as the less complex analogues, of
namely2,8 3,° 4,10 (phenylethynyl)-, and ethynylbenzene, while
also decomposing explosively on heating with emission of light
and gases, did not furnish nanotubes or onions, but only some

raphite and mainly amorphous carbon. Annealing the samples

pal’tlcles have commanded extensive recent attention because Oi an oven at 800C for 6 h increased the graphitized areas, but

their potential applications as unique electronic, magnetic, and
mechanically robust materialsWhen filled with metalg, such

only marginally. A more detailed investigation ®fthe “mono-
meric” precursor tol, revealed its explosion point at 14T,

nanocapsules have additional promise as magnetic particlesyith a sharp irreversible DSC exothermHi, = —53 kcal
contrasting agents, protecting cloaks, and catalysts and in other

applications-2 Among the various methods for their preparation,
the transition metal (especially Fe, Co, and Ni) catalyzed pyrolysis
of small organic molecules has shown promise for larger scale
production and in structural contrdWhile the use of organo-
metallic complexes as solid catalyst precuréanscopyrolytic
gaseous ingredierié has been reported, all of these studies have
been limited to gas-phase experiments at relatively high temper-
atures. There is very little literature that deals with the organic
solid-state generation of carbon nanotulé€$:The latter suffers
from extreme conditions, poor yields, or not readily modifiable
starting materials. Development of synthetic organic approaches
to closed shell large carbon structures is desirable but in its
infancy” Here we present a significant step in its progress.
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mol~1),** and, after heat treatment of the resulting black residue,
amorphous, carbon black like structures (TEWQnlike 1, LDI-
TOF MS on thin films of2 did not provide indications of a
measurable oligomerization process.

In contrast,thermolysis of the complexé&s-8 (for synthetic
and X-ray structural details, see Supporting Informatioad a
dramatically different outcomemost strikingly for the cobalt
complexes7 and 8. In all cases, a relatively smooth reaction
commenced below 20TC, for the carbonyl compounds occurring
concomitant with the release of CO gas. BoDSC reveals again
a sharp exothernHx, = —47 kcal mof?) at 153°C, followed
by a similar endotherm+#71 kcal mot?) at 188 °C, both
irreversible. We believe the former to signal a rapid polymeri-
zation process (possibly induced by initial w&a&o—Co bond
breaking), the latter to reflect the extrusion of (mainly) the CO
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Figure 1. TEM (200 keV, JEOL 200 CX microscope) images of carbon
nanotubes containing crystalline cobalt (fr@rtop), iron (from5; center),
and nickel (fromg; bottom). The distances between the dark parallel lines
of the tube frame correspond to graphitic sheet spacings.

ligands!® Support for this notion is provided by TGA (mass loss
at 153°C corresponding to 12 CO units) and IR spectroscopy
(no Co—CO signals). Spectral and GC analysis also showed the
evolution of CH, and H,, as observed fot,? as well as CQ (by
disproportionation of CO). The behavior @fwas qualitatively
similar, albeit more complex in detail (DSC). TEM analysis of
the pyrolytic powders of and8 showed that, while graphitization

is already clearly visible in the low-temperature regime, thermal
treatment (optimal conditions 800C, 6 h produces large
quantities* of well-formed carbon onions and multiwalled nano-
tubes and some graphitic, but very little amorphous carbon. Most
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constitute a dramatic improvement over those obtained in the
pyrolysis of1.

It should be stressed that simply mixidgor 2 with 5% Ca-
(CO) or 10%38, or treating2 with (1) BuLi and (2) NiBg, or
with CuCl (to generate the alkynyl copper species), or mixing
Coy(CO) with carbon powder and subjecting the resulting
mixtures to the above conditions gave soots with very little
graphitization, whereas ethynylbenzene{C®) and 3-[Co,-
(CO)2 resulted in graphite and amorphous material. Thus, while
metal complexation is clearly essential, there appears to be
pronounced specificity with respect to precursor structure, sug-
gesting perhaps the necessity for certain molecular or packing
features conducive to closed shell carbon construction. If these
could be delineated, the prospect for a taylored synthetic strategy
might be realized.

The present work raises some interesting questions with respect
to the mechanism of the present nanoparticle assehiblhile
it is noteworthy that a metalated polyyne growth model of single
wall nanotubes has been propos&anore prevalent, particularly
in explanations of conventional multiwalled particle assembly,
is the suggestion that (pyrolytic) carbon is dissolved in catalytic
metal particles from which it is extruded in regular fotrit.is
possible that such, too, is the case starting Wit!8 and that the
frequency, distribution, and activity of the catalytic sites depends
on the structure, composition, and morphology of the starting
complexi® If so, it appears reasonable to postulate that the
oligoyne framework undergoes radical initiated and/or metal
mediated trans- and intermolecular oligomerizatioto some
(pre)graphitic network that is subsequently annedlealclosed
shell carbon particle¥.Be that as it may, the current conversion
of molecularly defined, high-energy, high C/H ratio metal
complexed hydrocarbons to encapsulating tubes and spheres is
novel, amenable to structural variati#and relatively tractable
mechanistically, at least in its initial phases, perhaps leading to
an alternative to existing methods.
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